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ABSTRACT 

 
 
A Correlation Relaxation (C-R) algorithm for computing wind velocities from satellite images was recently 
developed by the author (Wu 1993). Unlike the traditional maximum cross correlation (MCC) method in 
which only the MCC position (MCCP) in a correlation coefficient matrix is used to derive a displacement, 
the new method considers many positions associated with high correlations in the matrix, including the 
MCCP, as candidates for the displacement. It selects an estimate from all candidates using a relaxation 
labeling technique which iteratively updates the likelihood of each candidate according to a few constraints 
expressing relevant problem knowledge. The C-R method is shown in this paper to have the potential to 
exploit a wide range of problem knowledge for improving cloud motion estimation from sequential satellite 
images. Further developing the C-R method is also justified on the need for more automated estimation of 
wind vectors in order to reduce or even eliminate manual editing work. In addition, the C-R method can 
create denser wind vector field than the MCC method. 
 
1. INTRODUCTION 
 
To date, passive tracer pattern tracking using the maximum cross correlation (MCC) method has been the 
main approach for operationally deriving wind velocity field from sequential images of geostationary 
meteorological satellites (Proc. 1st Wind Workshop, 1991). The method, because of its stronge needs for 
final manual editing relying on experts' subjective knowledge, is also inefficient in terms of processing 
speed. This inefficiency will be further enhanced when future generation satellites provide shorter interval 
image sequences. More automated approaches are sought for more efficient and objective cloud motion 
vector production (Szejwash 1991). 

Another deficiency of the MCC method is that many suspicious estimates are removed when quality control 
and manual editing procedures are performed, which necessarily means that some regions will end up 
without wind estimates and useful information may be lost during these procedures. More estimates are 
useful for improving numeric weather prediction (NWP) models. 
 
In most existing quality control procedures, knowledge of some kind, for example, wind field continuity 
(sometimes termed symmetry), comparisons with radiosonde or even NWP data such as those from 
ECMWF, is employed to determine the quality of each estimate. Subsequently, some estimates will be 
either labelled as unreliable or simply removed. This kind of quality control is, in fact, the validation of 
estimation results. The subject of the use of problem knowledge for improving the quality of estimation has 
not been well investigated previously. 



 
This paper attempts to address the above problems by investigating the potential of the newly-developed 
correlation relaxation (C-R) technique (Wu 1993). The C-R method, which is still in its early development, 
differs from existing wind estimation procedures in that it exploits problem knowledge for improving the 
quality of wind estimation. Since the exploration of problem knowledge is fully integrated within the 
estimation procedure the C-R method by its nature is an attempt towards more automatic wind estimation. 
Previously, Wu (1993) reported encouraging results achieved by the C-R method using only the knowledge 
of flow continuity. 

2. THE CORRELATION-RELAXATION (C-R) METHOD 

2.1 Argument For Developing C-R Method 
 
The C-R method comprises two parts: 1) cross correlation (CC) matching, which is the same as that used in 
the conventional MCC method; and 2) relaxation labeling. Relaxation labeling is a mathematical technique 
developed in the area of image processing (Rosenfeld and Kak 1982). 
 
The CC matching focuses on the translational motion cloud tracers which are assumed to be invariant in any 
two time-lapsed images. Conventionally the first of the two images is subdivided into contiguous rectangles, 
termed variably segments or templates. Each template is then matched against a larger searching area in the 
second image. This matching process results in a matrix of correlation coefficients. For the MCC method, a 
displacement vector is then derived from the position of the maximum correlation in the matrix. 
 
The MCC method has been shown by Ryan (1981), based on the argument in (Whalen 1971), to be a 
maximum likelihood (ML) approach. The method is purely statistical, and a ML estimate is obtained by 
considering only the image data statistics. Furthermore, the ML estimate always exists even if the image data 
is severely corrupted. In the analysis of cloud motion, which is non-rigid or evolving in nature, tracer 
deformation and image noise resulting, for example, from sensor noise or errors in image calibration, can 
make ML estimates less reliable. 
 
Given the assumption that a tracer is translated within the scope of the search area between the two time-
lapsed images it is natural to reason that any position in the correlation coefficient matrix is a possible 
candidate for the tracer's displacement even if its likelihood is lower than the ML from statistical calculation. 
Furthermore, if information in addition to data statistics is available, a candidate may be found to be a better 
estimate than the ML one. A correlation coefficient, thus, should be taken as only a relative measure of the 
'initial' likelihood of a candidate. The above argument establishes the background for the development of the 
new C-R method. 

2.2 The Relaxation Methodology 
 
With reference to (Wu 1993), each tracer template may be associated to a feature point (FP) at its centre. 
Feature points have been generated at either regular grid or non-regular grid positions within the first of an 
image pair based on image data variance measures. In future development, feature selection should be based 
on tracer quality identifications (Holmlund 1991). 
 
Following the rationale in Subsection 2.1, all positions in a correlation coefficient matrix are candidates for 
the displacement estimate of the corresponding FP. However, it is neither economical nor necessary to use all 
positions in the matrix. In practice, a small number, typically 10 to 20 in previous work, of positions in the 
matrix are used. These positions correspond to the highest correlation coefficients in the matrix. 
 
The relaxation labelling part of the C-R method consists of two maior stem: an initial label 
 



 
assignment and an iterative labeling process. In the initial label assignment, a set of labels, i.e. candidates for 
an estimate, are assigned to each FP. Each label is also given an initial probability derived from its 
likelihood.. 
 
The candidate vector set of a FP is therefore taken to be its label set. A no-match label for the no-solution 
case is also assigned to each FP to accommodate the situation where image distortion totally dominates 
signals (equivalently, the assumption of invariant tracer is completely invalid because of some complicated 
physical process). The initial likelihood of the no-match label is estimated as the difference between 1 and 
the MCC. This is reasonable because a correlation of 1, which is an extremely rare occurrence, in practice 
indicates a perfect solution. 
 
To obtain the initial probability measure for each label we normalise its likelihood over the entire set of 
candidates, including the no-match label, of the corresponding FP. 

The second major step of the relaxation labeling process modifies the probability of each label iteratively. 
The goal of the operation is to achieve a set of labels, one for each FP, which are most consistent with one 
another according to certain constraints expressing relevant problem knowledge. Within each iteration, the 
following three steps are performed: 

• Check the consistency between each label of a FP and each of the labels of all neighbouring 
FPs, and calculate a compatibility coefficient according to all constraints used; 

• Compute a support for each label from all of its associated compatibility coefficients and the 
probabilities of all neighbouring FPs' labels; 

• Update each label's probability using its support and the supports for other labels within the 
same label set of the corresponding FP. 

 
Wu (1993) derived the compatibility coefficients according to constraints expressing only the knowledge of 
flow continuity. The mathematical formulas for computing supports and updating probabilities are also 
detailed in (Wu 1993). The entire process can be summarised as follows. If a label, amongst other labels of 
the same FP, has relatively more support from neighbouring FPs under whatever constraints used then its 
probability will increase, i.e its chance of being selected as the estimate of the FP's displacement is enhanced. 
The probability will decrease if the label has relatively less support. After a number of iterations the system 
converges to a state where the probabilities of all labels have only small changes from one iteration to the 
next. The maximum probability label of each FP is then taken to be the estimate of the displacement if the 
label is not the no-match one. 
 
As an example of using flow continuity constraints to improve the quality of wind vector field estimation, 
Fig. 1 a  and l b  compare the result of the MCC method and that of the C-R method. 
 
2.3 Consideration On Template Size 
 
It is well known that the result of MCC pattern matching is sensitive to the size of template. The problem is 
three-folded. Firstly, when the size is large compared to that of the tracer it is a case of pattern deformation, 
and subsequently will degrade the displacement estimate. Secondly, when the size is smaller then the tracer 
there will be a great uncertainty in detecting the peak in the correlation surface as needed in the MCC 
method. This is the well known aperture problem. Thirdly, when the size is relatively small compared to the 
search area in the second image, non-unimodality (multiple peaks) correlation surface will occur even when 
the size is compatible to the tracer. 
 
For the C-R method, while template size larger then the tracer will still degrade the estimate the situation is 
different for smaller template sizes. This is because the C-R method is inherently an 
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uncertainty-reduction process. It is straightforward to see that the C-R can also cope with non-unimodality. 
Therefore, it is preferable to use relatively smaller template size in the C-R method, which, in turn, can result 
in denser vector fields. In addition, the use of reduced template increases the processing speed significantly. 

 
i  

Figure 1. Cloud motion vectors estimated by a) the MCC method; and b )  the C-R method from two GMS 
images. 

 
3. EXPLOITING PROBLEM KNOWLEDGE UNDER THE C-R FRAMEWORK 
 
This section attempts to generalize the C-R algorithm developed in (Wu 1993) to enable it to exploit more 
problem knowledge for improving the estimation of velocity fields. The objective of this task is two-folded: 
1) to reduce as much as possible and eventually remove completely the need for manual editing quality 
control; and 2) to preserve valuable information which tends to get lost during the MCC processing and 
following quality control procedures. 
 
Three aspects of generalisation are considered, as described in the following three subsections. 



 
3.1 The Use Of Information On Tracer's And Vector's Quality 
 
The correlation coefficients may be seen as a special kind of knowledge on the quality of a tracer's 
displacement. A tracer quality measure can in future be used to locate FPs. There may also be information 
available which can be used to modify a label's initial probability obtained from cross correlation. For 
example, some search areas can cover clouds from two different layers. In this case, the labels selected 
corresponding to correlation between two different cloud layers should be given lower probability. This will 
depend on accurate height assignment to tracers. 

3.2 The Use Of Knowledge On Relations Between Vectors And Feature Points 
 
Following (Wu 1993), we see that the compatibility coefficient for flow continuity is the product of three 
factors: 

C  =  C f  C2' C3 
where, Q expresses the compatibility between two neighbouring labels' directions, C2 expresses the 
compatibility between the two labels' magnitudes, and C3, the weighting factor related to the distance 
between the two FPs. 
 
This compatibility product can be extended to more than 3 factors when incorporating additional problem 
knowledge. For example, when tracer height information is available each FP is also attributed with a height 
value. The total compatibility between two FPs should then be weighted by an factor which is a function of 
the two FPs' heights. In the simplest case, the factor has only two values, i.e. 1 and 0, indicating whether the 
two FPs are within the same cloud layer or not. 

The existing algorithm exploited only 'spatial' flow continuity constraints. Temporal flow continuity 
constraints, which corresponds to validating MCC results using the symmetry check (Schmetz 1991, Bueche 
et. al 1991) between two vector fields, can also be used in the similar manner as the spatial flow continuity 
constraints. 

Information from different spectral channels, i.e, the visible, water vapour and IR channels, can also be used 
together for achieving quality cloud motion field. Laurent (91) recently showed that each spectral channel 
can be more advantageous than the others in estimating cloud motion at a specific cloud layer. One would 
then attempt to combine the use of all three channels to produce an unified and improved wind field. 
 
A possible processing scheme would be to take all spectral channel images as input to the C-R algorithm and 
generate motion vector candidates from each of them. In determining best estimates compatibility 
coefficients should modified according to a label's spectral and height information. Knowledge on the 
relation between tracers from two different spectral channels would also be valuable if available. 
 
Images from two satellites have been employed for accurately determining cloud height using stereoscopic 
method (Fujita 91). I expect that such data can also be used in combination under the C-R framework for 
improved wind estimation. 

3.3 The Use Of Wind Measurement From Other Sources 
 
Another important way of improving wind estimation is to make use of wind measurement from other 
sources, for examples, radiosonde data and NWP data, from, say ECMWF. These wind data are more 
sparsely located than cloud motion vectors. However, they can be used to tune the C-R processmg. 

The existing C-R algorithm has already the structure to exploit wind measurements from other sources, but 
has not been put into use because these data are not available to the author. Within the C-R aleorithm. wind 
measurements from other sources, if available, are treated as special labels. 



Each of these labels will be given a probability according to an expert's confidence on the measurement. 
These special labels are then used in the same way as other labels to compute supports for neighbouring 
candidates. However, the probabilities of these special labels will not be modified throughout the process. 

4. CONCLUSIONS 
 
It is shown in this paper that the C-R algorithm has the potential to exploit a wide range of problem 
knowledge for improving cloud motion estimation from sequential satellite images. Further developing the 
C-R method is also justified on the need for more automated techniques of wind estimation. Finally, the C-R 
method can create denser wind estimates than the MCC method. Denser wind estimates are needed for 
improved NWP. 
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